论文著作: 1. Qu, J.Z.*, Liu, G.Y., Zheng, H.Y., Wang, X.Y., Zhang, H., Gou, X.N., Xu, S.T.*, Xue, J.Q.* (2024). Deciphering the genetic basis of kernel composition in a maize association panel. Journal Of Agricultural and Food Chemistry 72(36):20182-20193. 2. Qu, J.Z., Xu, S.T.*, Gou, X.N., Zhang, H., Cheng, Q., Wang, X.Y., Ma, C.*, and Xue, J.Q.* (2023). Time-resolved multiomics analysis of the genetic regulation of maize kernel moisture. The Crop Journal 11(1):247-257. 3. Yu, T.#, Qu, J.Z.#, Zhou, Q., Ding, L., Cui, Y., Blennow, A.*, and Zhong, Y.Y.* (2022) High pressure/temperature pasting and gelling of starch related to multilevel structure-analyzed with RVA 4800. Carbohydrate Polymers. 295:119858. 4. Zhong, Y.Y.#, Qu, J.Z.#, Liu, X.X., Liu, Y., Bertoft, E., Petersen, B.L., Hamaker, B.R., and Blennow, A.* (2022) Different genetic strategies to generate high amylose starch mutants by engineering the starch biosynthetic pathways. Carbohydrate Polymers. 287:119327. 5. Wu W.H.#, Qu, J.Z.#, Blennow, A., Herburger, K., Guo, K., Tian, Yu., Xue, J.Q., Xu, R.Y., Zhu, C.H., Guo, D.W. *, and Zhong, Y.Y.* (2022). The effects of drought treatments on biosynthesis and structure of maize starches with different amylose content. Carbohydrate Polymers. 297:120045. 6. Qu, J.Z.#, Zhong, Y.Y.#, Ding, L., Liu, X.X., Xu, S.T., Guo, D.W., Blennow, A.*, and Xue, J.Q.* (2022). Biosynthesis, structure and functionality of starch granules in maize inbred lines with different kernel dehydration rate. Food Chemistry 368:130796. 7. Zhong, Y.Y.#, Qu, J.Z.#, Li, Z.H., Tian, Y., Zhu, F., Blennow, A.*, and Liu, X.X.* (2021). Rice starch multi-level structure and functional relationships. Carbohydrate Polymers 275(1):11877. 8. Zhong, Y.Y.#, Qu, J.Z.#, Blennow, A., Liu, X.X.*, and Guo, D.W.* (2021). Expression pattern of starch biosynthesis genes in relation to the starch molecular structure in high-amylose maize. Journal of Agricultural and Food Chemistry 69(9):2805-2815. 9. Qu, J.Z., Gou, X.N., Zhang, W.X., Li, T., Xue, J.Q., Guo, D.W.*, and Xu, S.T.* (2021). New insights into the response of maize to fluctuations in the light environment. Molecular Genetics and Genomics 296(3):615-629. 10. Li, T.#, Qu, J.Z.#, Tian, X.K., Lao, Y.H., Wei, N.N., Wang, Y.H., Hao, Y.C., Zhang, X.H., Xue, J.Q.*, and Xu, S.T.* (2020). Identification of ear morphology genes in maize (Zea mays L.) using selective sweeps and association mapping. Frontiers in Genetics 11:747. 11. Qu, J.Z., Xu, S.T., Tian, X.K., Li, T., Wang, L.C., Zhong, Y.Y., Xue, J.Q.*, and Guo, D. W.* (2019). Comparative transcriptomics reveals the difference in early endosperm development between maize with different amylose contents. PeerJ 7:e7528. 12. Qu, J.Z., Xu, S.T., Zhang, Z.Q., Chen, G.Z., Zhong, Y.Y., Liu, L.S., Zhang, R.H., Xue, J.Q.*, and Guo, D.W.* (2018). Evolutionary, structural and expression analysis of core genes involved in starch synthesis. Scientific Reports 8(1):12736. 13. Qu, J.Z.#, Ma, C.#, Feng, J.J., Xu, S.T., Wang L., Li, F.F., Li, Y.B., Zhang, R.H., Zhang, X.H., Xue, J.Q.*, and Guo, D.W.* (2016). Transcriptome Dynamics during Maize Endosperm Development. PLOS ONE. 11(10): e0163814. 14. 渠建洲, 冯文豪, 张兴华, 徐淑兔*, 薛吉全*. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(02):304-319. |